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We derive the explicit form of the Wess-Zumino quantum effective action of chiral W~-symmetric system of matter tields 
coupled to a general chiral W~-gravity background. It is expressed as a geometric action on a coadjoint orbit of the deformed 
group of area-preserving diffeomorphisms on cylinder whose underlying Lie algebra is the centrally-extended algebra of symbols 
of differential operators on the circle. Also, we present a systematic derivation, in terms of symbols, of the "hidden" SL(~; ~) 
Kac-Moody currents and the associated SL (~, ~) Sugawara form of energy-momentum tensor component T+ + as a conse- 
quence of the SL (oo; ~) stationary subgroup of the relevant W~ coadjoint orbit. 

1. Introduction 

The infinite-dimensional Lie algebra Woo (and its generalizations W1 +oo etc. ) [ I -3  ] are nontrivial "large N "  
limits of  the associative, but non-Lie,  conformal WN algebras [4 ]. They arise in various problems of  two-dimen- 
sional physics. The list of  their principal applications includes self-dual gravity [ 5 ], first hamiltonian structure 
o f  integrable KP hierarchy [ 6 ], string field actions in the collective field theory approach [ 7 ], conformal affine 
Toda theories [ 8 ]. One of  the most  remarkable manifestations of  Woo-type algebras is the recent discovery of  a 
subalgebra of  their "classical" limit woo (the algebra of  area-preserving diffeomorphisms) in c = 1 string theory 
as symmetry algebra of  the special discrete states [ 9 ] or as the algebra of  infinitesimal deformations of  the 
ground ring [ 10 ]. Also, it is worth noting that similar algebras are found also in D = 2 quasitopological models, 
such as D = 2 Yang-Mills [ 11 ], where the metric dependence of  the partition function degenerates into a depen- 
dence on the area only. 

It is well known in the mathematical literature [ 12 ], that the family o f  possible deformations Wo~ (q) o f  the 
initial "classical" w~o depends on a single parameter q and that, for each fixed value of  q, W~o(q) possesses an 
one-dimensional cohomology with values of  E. In particular, for q = 1 one finds that W~ ( 1 ) - ~ (S ' )  - the 
centrally extended algebra of  differential operators on the circle, which was recently studied in ref. [ 13 ]. The 
equivalence o f  ~ (S ' )  to the original definition of  Woo ( 1 ) [ 1,3 ] was explicitly demonstrated in ref. [ 14 ]. 

In this letter we first derive a W Z N W  field-theory action WDOe(S') [g] on a generic coadjoint orbit of  the 
group G = DOP ( S ' ) .  The elements g(~, x; t) o f  this group for fixed time t are symbols of  exponentiated differ- 
ential operators on S' and in this sense D O P ( S ' )  is the formal Lie group corresponding to the Lie algebra 
~'~'~ (S ~ ). As it was shown in ref. [ 15 ], the Legendre transform F i g ]  = - W i g -  ~ ] of  a group coadjoint orbit 
action W [ g ]  for a general infinite-dimensional group G provides the exact solution for the quantum effective 
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action of matter fields possessing an infinite-dimensional Noether symmetry group Go - the "classical" unde- 
formed version of the group G. Thus, our WZNW action Wooe(s, ) [g] is the explicit field-theoretic expression 
of the induced Woo-gravity effective action. In particular, we show that WDOI'(S:) [g] reduces to the well-known 
Polyakov's WZNW action of induced D =  2 gravity in the light-cone gauge [ 16 ] when restricting the WZNW 
field g(~, x; t) to the Virasoro subgroup of DOP(S ~ ). Furthermore, the appearance of the "hidden" S L ( ~ ;  ~) 
Kac-Moody symmetry and the associated SL(oo; OR) Sugawara form of the T÷+ component of  the energy- 
momentum tensor are shown to be natural consequences of the SL (oo; R) stationary subgroup of the pertinent 
DOP(S ~ ) coadjoint orbit. Also, we present WZNW field-theoretic expressions in terms of g(~, x; t) for the 
"hidden" currents and T+ +. 

2. Basic ingredients 

The object of primary interest is the infinite-dimensional Lie algebra ~ = ~ C~ (S 1 ) of symbols of differential 
operators "1 on the circle S ~ with vanishing zero-order part ~ = { X = X ( ~ ,  x)=Ek>~kXk(X)}. For any pair 
X, Ye f~= ~ ( ~  (S ' )  the Lie commutator  is given in terms of the associative (and non-commutative) symbol 
product denoted henceforth by a circle o: 

~- ..> 

[X, Y]-XoY-YoX, XoY=X(~,x) exp(0~0~)Y(~,x). (1) 

In order to determine the dual space f9"=~(9~*($1), let us consider the space ~v~(P(St)={U=U(~, x) 
= y ~= t ~-  k Uk(x) } of all purely pseudodifferential symbols [ 1 7 ] on SI and the following bilinear form on 
~U~ (P( S I ) ® ~69# (S ~ ): 

(UIX) - f dx Res, UoX= ~ dx Res¢ [exp( -0~0 , )  U(~, x ) ]  X(~, x ) .  (2) 

The last equality in (2) is due to the vanishing of total derivatives with respect to the measure f dx Res¢, and 
Res¢ U(~, x) = U~ (x).  From (2) we conclude that any pseudodifferential symbol of the form U (°) = exp (0x0¢) [ ( 1 / 
~)u(x) ] is "orthogonal" to any differential symbol X~@(9~(S ~), i.e. ( U  (°) I X ) = 0 .  Thus, the dual space 
fq*= ~(9#* (S ~ ) can be defined as the factor space ~v~(9(S' ) \ [exp (0x0¢) ( 1 /~)u(x)  ] with respect to the "zero" 
pseudodifferential symbols. In particular, we shall adopt the definition 

~ * = [ U . ;  U.(,,x)=U(,,x)-exp(OxO,)(~Res~U(,,x))forVU~J@C]. (3) 

Having the bilinear form (2) one can define the coadjoint action of ff on c5" via 

(ad*(X) UI Y) = - ( UI [X, Y] >, (ad*(X) U) (~, x) -- [X, U] . .  (4) 

Here and in what follows, the subscript ( - ) indicates taking the part of the symbol containing all negative 
powers in the ~-expansion, whereas the subscript • indicates projecting of the symbol on the dual space (3). 
The Jacobi identity for the coadjoint action ad*( ) (4) is fulfilled due to the following important property: 

[X, exp ( O~O~ )(~ u( x ) ) ]_ =exp ( O~O~ )(~ Res¢[X, exp ( OxO~ ) ~(~-]) , (5) 

i.e., the coadjoint action of @(9# (S 1 ) on ~v~C(S1 ) maps "zero" pseudodifferential symbols into "zero" ones. 
The central extension in ~ - ~ " ~ ' ~ ( S 1 ) = ~ ( 9 # ( S ~ ) ~  is given by the two-cocycle re(X, Y) 

= - ( 1/4rr) (g(X)  I Y),  where the cocycle operator g: ~ c5" explicitly reads [ 13 ] 

~l Let us recall [ 17 ] the correspondence between (pseudo)differential operators and symbols: X(~, x) = ~k~gXk (X)'-~A'= ~'kXk(X) (--i0x) k. 
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g(X) = [X, In ~] . .  (6) 

Let us now consider the Lie group G = DOP (S t ) defined as exponentiation of the Lie algebra f4 of symbols of 
differential operators on Sh 

and the group multiplication is just the symbol product g o h. The adjoint and coadjoint action of G = DOP (S t ) 
on the Lie algebra ~( ;~  (S t ) and its dual space ~0~*(S  t ), respectively, is given as 

[Ad(g)X]=goXog -1, ( A d * ( g ) U ) = ( g o X o g - l ) , .  (8) 

The group property of (8) Ad*(goh)=Ad*(g)Ad*(h)  easily follows from the "exponentiated" form of the 
identity (5). 

After these preliminaries we are ready to introduce the two interrelated fundamental objects S[g] and Y[g] 
entering the construction of the geometric action on a coadjoint orbit of G. To this end we shall follow the 
general formalism for geometric actions on coadjoint orbits of arbitrary infinite-dimensional groups with central 
extensions proposed in refs. [ 18,19 ]. Namely, S[g] is a nontrivial fg*-valued one-cocycle on the group G (also 
called finite "anomaly" or generalized schwarzian), whose infinitesimal form is expressed through the Lie- 
algebra f# cocycle operator g ( ) (6) (infinitesimal "anomaly" ): 

S[goh] =S[g]  +Ad*(g)S[h], dS[Exp(tX)  ] ,=o = ~ (X ) .  (9) 

The explicit solution of eq. (9) reads 

S[g] = - ( [ln ~, g] og-~) . .  (10) 

Further, Y[g] is a {q-valued one-form on the group manifold which is related to the fg*-valued group one-cocycle 
S[g] via the following basic exterior-derivative equation: 

dS[g] = -Ad*(g)g(  Y[g-'  ] ).  (11 ) 

The integrability condition for ( 11 ) implies that the one-form Y[g] satisfies the Maurer-Cartan equation and 
that it is a ~(P~ (S ~ )-valued group one-cocycle: 

dY[g] = ½ [ Y[g], Y[g] ], y[goh] = Y[g] +Ad(g)  Y[h] . (12) 

From (6) and (10) - (12)  one easily finds 

Y[g] = dg(~, x) og- ' (~, x) . ( 13 ) 

At this point it would be instructive to explicate formulas (6), (10) and (13) when the elements of 
G = D O P ( S  l ) and (¢= ~(9~ (S 1 ) are restricted to the Virasoro subgroup (subalgebra, respectively): 

X( ~, x) =~o)(x)'--,o)(X)Oxe Vir , 

g(~, x) =gxp  [ ~o9 (x) ] ~ f ( x )  -- exp [o9 (x)0x ]xe Diff(S' ) .  ( 14 ) 

Substituting (14) into (6), ( 10 ) and ( 13 ), one obtains 

dF(x) g(X)=[~og(x) In ~1. = - - ~ ( - 2  03co(x) + Y[gl Ig~,x~=Expt~o~x)l =~ OxF(x) . . . . . .  

S[g] [g(e,~)=E,pte,o~)l= 6,~ LSxF-  2 \OxF] J + .... (15) 
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The dots in ( 15 ) indicate higher order terms o(~k) ,  k~  3, which do not contribute in bilinear forms with ele- 
ments of Vir (14). 

3. WZNW action of Woo gravity 

According to the general theory of group coadjoint orbits [ 20 ], a generic coadjoint orbit (9(t:o.c) of G passing 
through a point ( Uo, c) in the extended dual space ~*= g*~R: 

(9(uo,c)-{(U(g), c)e  g*;  U(g)=Ad*(g)Uo+cS[g]} (16) 

has a structure of a phase space of an (infinite-dimensional) hamiltonian system. Its dynamics is governed by 
the following lagrangian geometric action written solely in terms of the interrelated fundamental group and 
algebra cocycles S[g], Y[g], 5( ) (cf. eqs. (6), ( 9 ) - (  13 ) ) [ 18,19 ]: 

W i g ] =  f ( U o l Y [ g - 1 ] ) - c ~  [(S[g]lY[g])-½d- ' ( (g(Y[g]) lY[g]))] .  (17) 

The integral in (17 ) is over one-dimensional curve 5¢ on the phase space (9(u0,c) (16 ) with a "time-evolution" 
parameter t. Along the curve ~e the exterior derivative becomes d = dt 0t. Also, d -  1 denotes the cohomological 
operator of Novikov [ 21 ] - the inverse of the exterior derivative, defining the customary multi-valued term 
present in any geometric action on a group coadjoint orbit. 

In the present case of G = DOP ($1), the co-orbit action (17) takes the following explicit form, which (as 
discussed in section 1 ) is precisely the Wess-Zumino action for induced Woo-gravity (the explicit dependence 
of symbols on (~, x; t) will in general be suppressed below): 

W[g] = - I dt dx Res~ Uo og-lo0,g 

fir + ~ dxRes~([ln~,g]og-~oO,gog-~-½d-l{[ln~,dgog -~] A (dgog-~)}) .  (18) 

The physical meaning of the first term on the RHS of (18) is that of coupling of the chiral W~ Wess-Zumino 
field g=g(~, x; t) to a chiral W~-gravity "background". For simplicity, we shall consider henceforth the case 
U0=0. 

It is straightforward to obtain, upon substitution of eqs. (14), (15 ), that the restriction of g(~, x; t) to the 
Virasoro subgroup reduces the Woo Wess-Zumino action (18) to the well-known Polyakov's Wess-Zumino 
action of induced D = 2 gravity [ 16,22 ]. 

The group cocycle properties (eqs. (9), ( 12 ) ) of S [g ] ( 10 ) and Y[g ] ( 13 ) imply the following fundamental 
group composition law for the W~ geometric action (18): 

W[gohl=W[gl+W[h]--~n d tdxRes¢( [ ln~ ,h ]oh- log-~o0 tg ) .  (19) 

Eq. (19) is a particular case for Woo of the group composition law for geometric actions on coadjoint orbits of 
arbitrary infinite-dimensional groups with central extensions [ 19 ]. It generalizes the famous Polyakov-Wieg- 
mann group composition law [ 23 ] for ordinary D = 2 WZNW models. 

Using the general formalism for co-orbit actions in refs. [ 18,19 ] we find that the basic Poisson brackets for 
S [g] (10) following from the action ( 18 ) read 

{S[g] (~, x), S[g] (rh Y)}PB = [S[g] (~, x ) + I n  ~, ~oP(Y, n; x, ~) ] . ,  (20) 
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where 0DOe ( ; ) ~ if*® ff denotes the kernel of the 0-function on the space of differential operator symbols: 

8Dop(X' ~;Y' r / ) = e x p ( O x 0 ¢ ) (  k~l ~ ~-(k+')r/'~O(X--Y)) " (21) 

Eq. (20) is a succinct expression of the Poisson-bracket realization of Woo, which becomes manifest by rewriting 
(20) in the equivalent form: 

{ (S[g]  IX), ( S [ g ] I Y ) } p B  = -- ( S [ g ] I [ X ,  Y] ) + (g(X) I Y) (22) 

for arbitrary fixed X, Ye f¢= ~(~g~ (S t ). Alternatively, substituting into (20) (or (22) ) the C-expansion of the 
pseudodifferential symbol S[g] (~, x ) = ~ ~>~ 2~-~S~ ( x  ), one recovers the Poisson-bracket commutation relations 
for Woo among the component fields S~(x) in the basis ofref. [ 14] (which is a "rotation" of the more customary 
Woo basis of ref. [2] ). 

In particular, for the component field S: ( x )  - ( 4n / c )  T_ _ (x )  (the energy-momentum tensor component, cf. 
15 ) ) one gets from (20) the Poisson-bracket realization of the Virasoro algebra: 

4n 
S2(X),  S2(Y)}pB = -- - -  [2S2(x) OxO(x -y )  + OxS2(x)O(x-y) + ~ 03xd(X-y ) ] . (23) 

c 

The higher component fields Sr(x) ,  r= 3, 4 .... turn out to be quasi-primary eonformal fields of spin r. The 
genuine primary fields W(x) (r>~ 3) are obtained from S~(x) by adding derivatives of the lower spin fields 
S , ( x )  ( 2 ~ q < ~ r -  1 ). For instance, for ~33(x) =S3(x)  - ~  O:,S2(x), eq. (20) yields 

4~z 
{S2(x), ~/3(Y))PB = - - -  [3a~(x) OxO(x-y)+20:,~V33(x) 5 ( x - y ) ] .  (24) 

c 

4. Noether and "hidden" symmetries of W~ gravity 

The general group composition law (19) contains the whole information about the symmetries of the Woo 
geometric action ( 18 ). First, let us consider arbitrary infinitesimal left group translation. The corresponding 
variation of the action ( 18 ) is straightforwardly obtained from (19) 

6~ W[g] - W[ (~+e)og] - W[g] = ~ dt dxRe%{( [ln ~ ,g]og- t ) .o0 ,e} .  (25) 

From (25) one finds that ( 18 ) is invariant under t-independent left group translations and the associated Noether 
conserved current is the generalized "schwarzian" S[g] (10) whose components are the (quasi)primary con- 
formal fields &(x; t) of spin r. 

Next, let us consider arbitrary right group translation. Now, from (19) the variation of the W~ action (18) 
is given by 

O~ W[g] - W[go ('O + ~) ] - W[g] = - ~ dt dx Re%( [ln ~, ~1.o Y , ( g - t  ) ) (26) 

_ c f d t d x R e s ¢ ( [ l n ~ ,  Y t ( g - ~ ) ] . o ~ ) ,  (27) 
4~ 

where Y~(g- ~ ) denotes the Maurer-Cartan gauge field: 

Yt(g -1 ) = - g -  ~oiJtg . (28) 
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Equality (27) implies the equations of motion ~2: 

g(Yt(g -1 ) )[ on-shen = 0 • (29) 

AS a matter of fact, the off-shell relation ( 11 ) exhibits the full equivalence between the Noether conservation 
law OrS [g] = 0 (25 ) and the equations of motion (29). 

On the other hand, equality (26) shows that the Woo geometric action (18) is gauge-invariant under arbitrary 
time-dependent infinitesimal right group translations g(~, x; t) ~g(~, x; t)o ( 1 + ('(~, x; t) ) which satisfy 

g(~') - - [In ~, ~]. = 0 .  (30) 

For finite right group translations k=  Exp ((') the integrated form of (30) reads 

Stk]  - - ( [In ~, k] o k - ' ) .  = 0 .  (31) 

The solutions of eqs. (30) and (31 ) form a subalgebra in ~ ( ~  (S ' ), and a subgroup in DOP (S'),  respectively. 
From ( 16 ) one immediately concludes that the latter subgroup, 

G~t~t ={k; S[kl  =0},  (32) 

is precisely the stationary subgroup of the underlying coadjoint orbit (9(vo=o,c). The Lie algebra of (32), 

ffs~ = {~ ~(~') - - [ln~, ~']. =0} ,  (33) 

is the maximal centerless ("anomaly-free") subalgebra of ~ ($1), on which the cocycle (6) vanishes: 
to (~'t, ~'2 ) = - ( g (~'1) I ('2) = 0 for any pair ~',,2 e ~t,t. 

The full set of linearly independent solutions {((t,,,)t~, x)} of g((') =0, comprising a basis in (¢st~t (33), can 
be written in the form 

(,h,~,(,, x) = ~ ( l q ) ( l - 1 ) ] ( l + q ) ,  'qx  q+m (34) 
q=, ( q -  1)!(2l)! F ( q + m + l ) '  

where l= 1, 2, ..., and m =  - / ,  - l +  1 ..... l -  1, L 
The basis (34) identifies the stationary subalgebra ~stat (33) as the infinite-dimensional algebra sl (oo; R). 

Namely, fC~t decomposes (as a vector space) into a direct sum of irreducible representations ~-~lt~2~ of its 
sl (2; R) subalgebra with spin l and unit multiplicity: ffst~, = ~ ~ ,  ~[~2) • This sl (2; P) subalgebra is generated by 
the symbols 2(~1,1~=~x 2, (~l'°)=~c and ((1,-i~=~. The subspaces ~/~lt?2) are spanned by the symbols {((/,m); 
l=  fixed, [ m I ~< l) with (~,t) being the highest-weight vectors: 

[ ~ 2 ,  ~(l'/)] = 0  , [~X, ((l'm)]-~m((l'm), [~, ((l,m)] = ( ( / ,m-t )  (35 )  

The Cartan subalgebra of sl(oo; ~) is spanned by the subset {((l,o~, l= 1, 2, ...) of symbols (34). 
The above representation of sl (oo; ~) in terms of symbols (34) is analogous to the construction of sl (oo; ~) 

as "wedge" subalgebra W^ (/1) of Woo for p =  0 [ 2,24 ], which in turn is isomorphic to the algebra A~ of Kac 
[25]. 

Now, accounting for (33 ), (34), one can write down explicitly the solution to the equations of motion (29): 

Yt(g- l )[  . . . .  hea-- ~ ~ J(l 'm)(t)((l 'm)(~,X), (36) 
1=1 [ml<~l 

with (tt, m) as in (34). The coefficients j(I,m) (t) in (36) are arbitrary functions of t and represent the on-shell 
form of the currents of the "hidden" fq~t~t---- sl (oo; ~ ) Kac-Moody symmetry of W[g] ( 18 ). 

~2 The restriction ofeq. (29) to the Virasoro subgroup via (14), (15) takes the well known form [16] 03 (0d'k0A") =0, andf(x;  t) is 
the inverse Virasoro group element: f ( F (  x; t); t) = x. 
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Indeed, upon right group translation with ~( ~ ) = ~ a ( l,m ) ( X, t )  o ~ ( t,m ) ( ~, X )  with arbitrary coefficient functions 
( zero order symbols ) a (~,m) ( x, t ), one obtains from ( 26 ) 

. c f ~¢(a) W [ g ] = -  ~-~ d t d x  ~, Oxa(t'm)(x,t)Y(t'm)(x,t) , (37) 
1=1 Irnl<~l 

y (1 ,m)~ ~ ( _ _ O x ) r - - I  (_l)t~(l+l)! [yt(g-1)]_~_~Ox[~(t,m)oYt(g-~)], . 
r =  1 

(38) 

The subscripts r in (38) and below indicate taking the coefficient in front of ~ in the corresponding symbol. 
The Noether theorem implies from (37) that jtt,,.) (x, t) (38) are the relevant Noether currents correspond- 

ing to the symmetry of the Woo action (18) under arbitrary right group SL(~;  ~) translations. Clearly, 
J(t,m)(x, t) are s l (~ ;  ~)-valued and are conserved with respect to the "time-evolution" parameter x - x - :  

OxY(Z'')(x, t)l .... h~t~=O. (39) 

Substituting the on-shell expression (36) into ( 38 ) we get 

J(l'm)(x, t) lo.-~h.,,= ~ E K(l'm)(l"m')j(l"m')(t), 
l~1 Iml<~l 

where g (l,m)(t',m') is a constant invariant symmetric sl(oe; N) tensor: 

( 1__~_~ r r(/,m)ot.(/,,m,)l K(t"m(e'm')= ~=1 ~ ( -Ox)~- I  (~(e"n'))rRes¢[ln~'~(l 'm)]--r+l "xt~ ~ J~] '  

(40) 

(41) 

naturally representing the Killing metric of sl (oo; E). 
The fact that the currents J (t,m) (t) in (3 6 ) generate a sl (oo; ~ ) Kac-Moody algebra, can be shown most easily 

by considering infinitesimal right group translation g~go(1]+~,) with ~=El ,  m~(l'm)(t)((l'm)(~, X)E 
s l (~ ;  ~) on y , (g -1 )  =_ _g-loOtg" Recall (cf. (37), (40)), that j(t,m) (t) are the corresponding Noether sym- 
metry currents. From the cocycle property (12) one obtains 

~,  Yt(g-~ ) ~ Yt( ( ~ - ~ ) o g -  l ) - y t ( g - t  ) = - Ot~ + [ Yt(g-~ ), ~,], (42) 

which upon substitution of (36) yields 

fi, j(l.,,) ( t ) = - O,e (l'm) ( t ) + f I~,~)m(,,~ "m') JW'm')(t)E ~e"m") (t) . (43) 

Here f I~,m)~!/; '~') denote the structure constants of sl(oo; ~) in the basis ~(t,m) (34) (i.e., [~(z.,,), ~(p,,,,)] = 
f (l,m) (l',m') ]'(l",m") (l",rn") ~ ). 

Finally, let us also show that the canonical Noether energy-momentum tensor T+ + (the Noether current 
corresponding to the symmetry of the W~ action ( 18 ) under arbitrary rescaling of t--- x ÷ ) automatically has the 
(classical) Sugawara form in terms of the "hidden" sl (oo; g~ ) Kac-Moody currents j(t,~) (t) ( 36 ). Indeed, the 
variation of ( 18 ) under a reparametrization t--, t + p ( t, x) reads 

! F 
~p W[g] = - ~ J dt dx Oxp(t, x )  T+ + (t, x )  , (44) 

T++--- 2cr=%l ~ (-1)r0~r+l [ Y t ( g - ~ ) ° Y ' ( g - L ) l r +  ~ Res~(0~÷LYt(g-')°[ln~' YAg-1)I) . (45) 

Substituting (36) into (45) and accounting for (34), one easily gets the sl (m; N) Sugawara representation of 
the energy-momentum tensor (45): 

260 



Volume 288, number 3,4 PHYSICS LETTERS B 27 August 1992 

1 K~t'm)~t"m')J (t'm) ( t ) J  (l''m') ( t )  , (46) T+ + ( t, x )  [ . . . .  h~,, = 2-C 
(l,m),(l',m') 

where K <t,m)<t',"') is the sl(oo; BR) Killing metric tensor (41).  
In particular, substituting into (45) the restriction of  g(C, x; t) to the Virasoro subgroup via (14),  ( 15 ), we 

recover the well-known (classical) sl(2; ~)  Sugawara form of  T+ + in D =  2 induced gravity [26 ]. 

5. Conclusions and outlook 

According to the general discussion in ref. [ 15 ], the Legendre transform F [ y ]  = - W [ g -  ~ ] of  the induced 
Woo-gravity W Z N W  action ( 18 ) is the generating functional, when considered as a functional o f  y-= Yt (g - ~ ), of  
the quantum correlation functions of  generalized schwarzians S [ g ] .  Similarly, W [ J ]  = -  WDOP<S,)[g], when 
considered as a functional of  J=- - ( c / 4 n ) S [ g ] ,  is the generating functional of  all correlation functions of  the 
currents Y t ( g - 1 ) .  These correlation functions can be straightforwardly obtained, recursively in N, f rom the 
functional differential equations (i.e., Ward identities): 

c ,] 
, ~y  + [ f f }  - ~-~nln C, = 0 ,  OtJ+ , J -  ~-~n In = 0 .  (47) 

An interesting problem is to derive the Woo analogue of  the Knizhnik-Zamolodchikov equations [27] for the 
correlation functions <g(C~, xt; t~ ) ... g(Cu, XN; tu)>.  TO this end we need the explicit form of  the symbol 
r ( (C, x) ;  ( C " x ' ) )  e @(9~ (S ~ ) ® ~ ( ~  (S 1 ) of  the classical r-matrix of  Wo~. This issue will be dealt with in a forth- 
coming paper. 

Another basic mathematical  problem is the study of  the complete classification of  the coadjoint orbits o f  
D O P ( S  ~ ) and the classification of  its highest weight irreducible representations. 

Let us note that, in order to obtain the W Z N W  action of  induced W l+ ~ gravity along the lines of  the present 
approach, one should start with the algebra of  differential operator symbols containing a nontrivial zero order 
term in the C-expansion X =  Xo ( x )  + ~ k >~ ~ k X k  (X) .  In this case one can solve the "h idden"  symmetry (i.e. the 
"anomaly"  free subalgebra) equation [In C, #] ( - ) = 0 and the result is the Borel subalgebra ofgl (oo; ~ ) spanned 
by the symbols #(p,o)= Cpxq with p i> q. The W1 +oo W Z N W  action will have formally the same form as (18),  
however, now the meaning of  the symbol g -  z (~, x; t) o f  the inverse group element is obscure due to the nontriv- 
ial ( (C, x)-dependent)  zero order term in the C-expansion ofg(C, x; t). 
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